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consistency

• calculations simplify greatly as the sample size grows, and hence asymptotic analyses are a
powerful and general evaluation tool

• minimum requirement: Tn ≡ Tn(X ) is a consistent sequence of estimators of the parameter θ if
Tn

p−→ θ for every θ ∈ Θ. That is, for every ϵ > 0 and θ ∈ Θ,

lim
n→∞

Pθ (|Tn − θ| < ϵ) = 1

• although we colloquially speak about consistent estimators, it is actually the sequence of
estimators that converge in probability to the true parameter value
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consistency of the sample mean

• example: letting X1, . . . ,Xn ∼ i.i.d.N(µ, 1) yields X̄n ∼ N(µ, 1/n) and so

Pµ(|X̄n − µ| < ϵ) =

∫ µ+ϵ

µ−ϵ

√
n

2π
exp

(
−n(x̄n − µ)2

2

)
dx̄n

=

∫ ϵ
√
n

−ϵ
√
n

1√
2π

exp

(
−z2

2

)
dz

= P(|Z | < ϵ
√
n) → 1 as n → ∞

• more generally, apply Chebychev’s inequality to show that

Pµ(|Tn − θ| ≥ ϵ) ≤ 1
ϵ2

Eµ(Tn − θ)2

=
1
ϵ2
[
varθ(Tn) + bias2θ(Tn)

]
converges to zero if and only if varθ(Tn) → 0 and biasθ(Tn) → 0 for all θ

• example: Eµ(X̄n) = θ and varµ(X̄n) =
1
n
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consistency of ML estimators

• theorem: let Xi ∼ i.i.d.f (x |θ). Define the (rescaled) likelihood function

Q̂n(θ) = n−1 ln ℓ(θ|x) = n−1
n∑

i=1

ln f (xi |θ)

Under mild regularity conditions, the maximum likelihood estimator θ̂ = argmax Q̂n(θ) is
consistent, θ̂ p−→ θ

• this is an example of a extremum estimator: the proofs that follow do not require that Q̂n(θ) is a
likelihood function, but rather that the estimator is the argument that maximizes some function
that depends on parameters.

− more applications of extremum estimators soon!
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consistency of ML estimators

• why should this be the case? basic sketch of ideas:

− as sample grows, Q̂n(θ)
p−→ Q0(θ) for every θ

− if Q0(θ) is maximized uniquely at θ0, the argmax of Q̂n(θ) should be close to θ0

− we need to ascertain that technical conditions are in place which allows us to exchange the limit of
the maximum of Q̂n(θ) by the maximum of the limit Q0(θ)

− if Q̂n(θ) ∈ [Q0(θ)− ε,Q0(θ) + ε], then θ̂ ∈ [θl , θu ], and distance between θu and θl must be shrinking
as ε → 0
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consistency of ML estimators

• definition: Q̂n(θ) converges uniformly in probability to Q0(θ) if, and only if,

sup
θ∈Θ

|Q̂n(θ)− Q0(θ)|
p−→ 0.

• we prove consistency in the (more general) framework of extremum estimators.

• theorem: if there is a function Q0(θ) such that:

(i) Q0(θ) is uniquely maximized at θ0 (identification);

(ii) Θ is compact;

(iii) Q0(θ) is continuous;

(iv) Q̂n(θ) converges uniformly in probability to Q0(θ).

then θ̂
p−→ θ0.
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consistency of ML estimators
• proof: take an ϵ > 0. Since θ̂ maximizes Q̂n(θ),

Q̂n(θ̂) ≥ Q̂n(θ0) > Q̂n(θ0)−
ϵ

3

By uniform convergence of Q̂n(θ) to Q0(θ), we also have that Q0 and Q̂n are arbitrarily close at
any θ. So we can find an N such that n ≥ N,

|Q0(θ)− Q̂n(θ)| <
ϵ

3
⇒ Q0(θ)− Q̂n(θ) <

ϵ

3
⇒ Q̂n(θ) > Q0(θ)−

ϵ

3
and

|Q0(θ)− Q̂n(θ)| <
ϵ

3
⇒ −Q0(θ) + Q̂n(θ) <

ϵ

3
⇒ Q0(θ) > Q̂n(θ)−

ϵ

3
.

Since convergence is uniform, the above inequality holds for any θ ∈ Θ. In particular,

Q0(θ̂) > Q̂n(θ̂)−
ϵ

3
Q̂n(θ0) > Q0(θ0)−

ϵ

3
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consistency of ML estimators
• proof (cont’d): collecting inequalities,

Q0(θ̂) > Q̂n(θ̂)−
ϵ

3
Q̂n(θ̂) > Q̂n(θ0)−

ϵ

3
Q̂n(θ0) > Q0(θ0)−

ϵ

3

adding those inequalities, we have shown that for any ϵ > 0, Q0(θ̂) > Q0(θ0)− ϵ with probability
approaching 1.

Let C be any open subset of Θ containing θ0. Then Θ ∩ Cc is compact. From the fact that Q0(θ)
is uniquely maximized at θ0 and Q0(θ) is continuous,

sup
θ∈Θ∩Cc

Q0(θ) = Q0(θ
∗) < Q0(θ0)

for some θ∗ ∈ Θ ∩ Cc . Choosing ϵ = Q0(θ0)− supθ∈Θ∩Cc Q0(θ), it follows that, with probability
approaching 1,

Q0(θ̂) > sup
θ∈Θ∩Cc

Q0(θ)

and so θ̂ ∈ C. ■
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consistency of ML estimators

• corollary: under conditions (i)-(iv), MLE is consistent.

• in particular, MLE satisfies the identification condition Q0(θ) is uniquely maximized at θ0.

• proof:

Q0(θ)− Q0(θ0) = E
(
ln

f (x |θ)
f (x |θ0)

)
Jensen
< lnE

(
f (x |θ)
f (x |θ0)

)
= ln

∫
f (x |θ)
f (x |θ0)

f (x |θ0)dx

= ln

∫
f (x |θ)dx = ln 1 = 0

which implies that Q0(θ) < Q0(θ0) for any θ ̸= θ0 ■
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asymptotic distribution

• consistency says nothing about the asymptotic variance apart that it eventually converges to zero

• definition: the limiting variance τ2 of the estimator Tn is given by

lim
n→∞

kn VarTn = τ2 < ∞

where kn is a sequence of constants

• example: if X1, . . . ,Xn ∼ i.i.d.N(µ, σ2), then the limiting variance of X̄n is σ2 = limn→∞
√
n varX̄n

given that X̄n ∼ N(µ, σ2/n)

• definition: for an estimator Tn, the asymptotic variance is σ2 in

kn
(
Tn − τ(θ)

) d−→ N(0, σ2)

if such convergence exists
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efficiency

• definition: a sequence of estimators Tn is asymptotically efficient for a parameter τ(θ) if
√
n
(
Tn − τ(θ)

) d−→ N
(
0, ς2

θ

)
, with

ς2
θ =

[τ ′(θ)]
2

Eθ

[
∂
∂θ

ln f (X |θ)
]2 (CR lower bound)

• theorem: if X1, . . . ,Xn ∼ iid f (x |θ), with f (x |θ) satisfying some mild regularity conditions, the ML
estimator θ̂n is asymptotically efficient for θ, implying that

√
n
(
θ̂n − θ0

) d−→ N(0, I(θ0)
−1)

where I(θ0) is Fischer information matrix. That is, the MLE achieves the Cramér-Rao lower bound
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asymptotic efficiency of MLE

• proof: under certain regularity conditions,

(i) 1√
n

∑n
i=1 s(Xi , θ0)

d−→ N(0, I(θ0)), where I(θ) is the Fischer information matrix

(ii) 1
n
H(xi , θ0)

p−→ Eθ (H(x , θ0)) = H(θ0)

(iii) remember that H(θ0) = −I(θ0)

then, Taylor-expanding the score, for some θ̃ ∈
[
θ0, θ̂n

]
,

0 =
1
n

n∑
i=1

s
(
Xi , θ̂n

)
=

1
n

n∑
i=1

s
(
Xi , θ0

)
+

(
1
n

n∑
i=1

H
(
xi , θ̃

)) (
θ̂n − θ0

)
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asymptotic efficiency of MLE

• proof (cont’d): therefore

(
θ̂n − θ0

)
= −

(
1
n

n∑
i=1

H
(
xi , θ̃

))−1
1
n

n∑
i=1

s (Xi , θ0)

√
n
(
θ̂n − θ0

)
= −

(
1
n

n∑
i=1

H
(
xi , θ̃

))−1

︸ ︷︷ ︸
p−→H(θ0)+op(1)

1√
n

n∑
i=1

s (Xi , θ0)︸ ︷︷ ︸
d−→N(0,I(θ0))

d−→ N
(
0, I(θ0)

−1I(θ0)I(θ0)
−1) ∼ N

(
0, I(θ0)

−1)
that is, the MLE achieves the Cramér-Rao lower bound asymptotically ■

• procedure:

(i) calculate I(θ) analytically

(ii) aproximate I(θ0) with I(θ̂n), which should be a good approximation since θ̂n
p→ θ0
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comparisons

• definition: if two estimators Wn and Vn are such that
√
n (Wn − τ(θ))

d−→ N(0, σ2
W )

√
n (Vn − τ(θ))

d−→ N(0, σ2
V )

then the asymptotic relative efficiency (ARE) is ARE(Vn,Wn) =
σ2
W

σ2
V
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asymptotic tests

• as the sample size grows, the asymptotic approximation works better and we are able to derive
tests even in complicated problems for which no optimal test exists

• trinity of large-sample tests

(1) likelihood ratio tests: distance between log-likelihoods

(2) Wald tests: distance between estimators

(3) score tests (or LM tests): distance to zero score

• differences

− LR tests estimate both restricted and unrestricted models

− Wald tests estimate only unrestricted model (if simple null)

− LM tests estimate only restricted model
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trinity of tests

ln ℓ(θ,X )

ln ℓ(θ̂,X )

ln ℓ(θ̃,X )

θ̃ θ̂ θ
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LR test, again

• it is one of the most useful methods for complicated problems because it gives not only an explicit
definition of the test statistic, but also an explicit form for the rejection region

reject H0 if x ∈
{

x : λ(x) =
supθ∈Θ0 ℓ(θ|x)
supθ∈Θ ℓ(θ|x) ≤ c

}

• even if we cannot obtain the two suprema analytically, we can usually compute them numerically

• to define a level α test, we choose c such that

sup
θ∈Θ0

Pθ

(
λ(X ) ≤ c

)
≤ α
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asymptotic distribution of the LR test

• theorem: suppose that X1, . . . ,Xn ∼ iidf (x |θ), with the pdf satisfying the usual regularity
conditions and consider testing the null H0 : θ = θ0 versus the alternative H1 : θ ̸= θ0, then under
H0,

−2 lnλ(X )
d−→ χ2

1

under the null

• proof: Taylor expanding ln ℓ(θ|x) around θ̂ yields

ln ℓ(θ|x) ∼= ln ℓ(θ̂|x) + ln ℓ′(θ̂|x)(θ − θ̂) +
1
2
ln ℓ′′(θ̂|x)(θ − θ̂)2

∼= ln ℓ(θ̂|x) + 1
2
ln ℓ′′(θ̂|x)(θ − θ̂)2

it then follows that

−2 lnλ(x) = 2
[
ln ℓ(θ̂|x)− ln ℓ(θ0|x)

] ∼= − ln ℓ′′(θ0|x)(θ0 − θ̂)2

completing the derivation as, under the null, − 1
n
ln ℓ′′(θ̂|x) p−→ I(θ0) and

√
n(θ̂ − θ0)

d−→ N
(
0, I(θ0)

−1) ■
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LR test for Poisson intensity

• example: suppose that X1, . . . ,Xn ∼ iid Poisson(λ) and that the interest lies in testing H0 : λ = λ0

versus H1 : λ ̸= λ0, then

−2 lnλ(x) = −2 ln
(
e−nλ0λnx̄n

0

e−nλ̂λ̂nx̄n

)
= 2n

[
(λ0 − λ̂)− λ̂ ln

(
λ0

λ̂

)]
> χ2

1,α

is the rejection region, where λ̂ = x̄n is the ML estimator of λ

• accuracy of the asymptotic approximation

• simulation study with λ0 = 5 and n = 25 (10,000 reps)

percentile 0.80 0.90 0.95 0.99
simulated distribution of the LR test 1.630 2.726 3.744 6.304
asymptotic approximation 1.642 2.706 3.841 6.635
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extending the asymptotic theory. . .

• theorem: suppose that X1, . . . ,Xn ∼ iid f (x |θ), with the pdf satisfying the usual regularity
conditions and consider testing the null H0 : θ ∈ Θ0 versus the alternative H1 : θ ∈ Θc

0. Then

−2 lnλ(X )
d−→ χ2

d

under the null, where the degrees of freedom d is the difference between the number of free
parameters in Θ and Θ0

reject H0 if and only if − 2 lnλ(X ) ≥ χ2
d,1−α

• note that the type I error probability will approach α if θ ∈ Θ0 only for large samples, and hence
we say that the above rejection region yields an asymptotic size α test
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LR test for multinomial probabilities

• example: suppose that X1, . . . ,Xn are iid discrete random variables with pmf f (j |p) = pj for
j ∈ {1, . . . , 5}, then ℓ(p|x) =

∏n
i=1 p

n1
1 pn2

2 pn3
3 pn4

4 pn5
5 , where nj is the number of x1, . . . , xn equal

to j

• test H0 : p ∈ Θ0, where Θ0 = {p : p1 = p2 = p3 and p4 = p5}

• full parameter space Θ has 4 free parameters, whereas only 1 free parameter remains after
imposing the restrictions in Θ0: d = 3

• unrestricted MLE: p̂j =
nj
n
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Wald test

• large-sample test based on any asymptotically normal estimator

Zn(θ) =
Tn − θ

σ(Tn)
d−→ N(0, 1) for each fixed value of θ ∈ Θ

• even if σ has to be estimated,

Zn(θ) =
Tn − θ

σ(Tn)
=

Tn − θ

σ̂(Tn)

σ̂(Tn)

σ(Tn)
d−→ N(0, 1)

as long as σ̂(Tn)
p−→ σ(Tn).

• example: consider testing H0 : θ = θ0 versus H1 : θ ̸= θ0 using the fact that Zn(θ0)
d−→ N(0, 1)

under the null H0

− asymptotic size α requires to reject if |Zn(θ0)| > z1−α/2

− consistent because Pθ

(
|Zn(θ0)| > z1−α/2

)
→ 1 for any θ ∈ Θc

0
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Wald test for binomial probability

• example: suppose that X1, . . . ,Xn ∼ iid Bernoulli(p) and that the interest lies in testing
H0 : p ≤ p0 versus H1 : p > p0, with 0 < p0 < 1

• X̄n ∼ MLE, with variance σ2(X̄n) = p(1 − p)/n

Wn = Zn(p0)
σ(X̄n)

σ̂(X̄n)
=

X̄n − p0

σ(X̄n)

σ(X̄n)√
X̄n(1 − X̄n)/n

d−→ N(0, 1)

• reject H0 : p ≤ p0 if Tn > z1−α

• in the two-sided case with H0 : p = p0, we can alternatively estimate σ2(X̄n) = p(1 − p)/n by
p0(1 − p0)/n, yielding a more powerful test for some values of p

24 / 27



score test

• score statistic Sθ = s(X , θ) = ∂ ln ℓ(θ|X )
∂θ

has mean zero and

varθ(Sθ) = Eθ

[
∂ ln ℓ(θ|X )

∂θ

]2

= −Eθ

[
∂2 ln ℓ(θ|X )

∂θ2

]
= I(θ)

for all θ, and hence

LM =
s(X , θ0)√

I(θ0)

d−→ N(0, 1)

• asymptotic level α score test rejects H0 : θ ≤ θ0 if LM > z1−α

• if composite null, maximize restricted likelihood to obtain θ̂0 (possibly by means of Lagrange
multipliers)
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score test for Bernoulli probability

• suppose that X1, . . . ,Xn ∼ iid Bernoulli(p) and that the interest lies in testing H0 : p = p0 versus
H1 : p ̸= p0, then

LM =
sp0√
I(p0)

=
X̄n − p0√

p0(1 − p0)/n

d−→ N(0, 1)

− reject H0 : p = p0 if |LM| > z1−α/2

− same test statistic than the alternative Wald test
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Reference:

• Casella and Berger, Ch. 10

• Newey and McFadden, "Large Sample Estimation and Hypothesis Testing", Handbook of
Econometrics, Ch. 36

Exercises:

• 10.1-10.10, 10.18-10.19, 10.22, 10.32-10.38, 10.40, 10.47
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