Asymptotics*

Ricardo Dahis

PUC-Rio, Department of Economics

Summer 2023

^{*}Last updated: February 13, 2023, 08:37h

Contents

 $1. \ {\rm point} \ {\rm estimation:} \ {\rm consistency} \ {\rm and} \ {\rm efficiency} \ {\rm of} \ {\rm MLE}$

- 2. hypothesis testing in large samples
- 2.1 trinity of tests

3. exercises

Contents

$1. \ \mbox{point estimation: consistency and efficiency of MLE}$

2. hypothesis testing in large samples

2.1 trinity of tests

3. exercises

consistency

- calculations simplify greatly as the sample size grows, and hence asymptotic analyses are a powerful and general evaluation tool
- minimum requirement: $T_n \equiv T_n(\mathbf{X})$ is a consistent sequence of estimators of the parameter θ if $T_n \xrightarrow{P} \theta$ for every $\theta \in \Theta$. That is, for every $\epsilon > 0$ and $\theta \in \Theta$,

$$\lim_{n\to\infty}\mathbb{P}_{\theta}\left(|T_n-\theta|<\epsilon\right) = 1$$

• although we colloquially speak about consistent estimators, it is actually the sequence of estimators that converge in probability to the true parameter value

consistency of the sample mean

• example: letting $X_1,\ldots,X_n\sim {\sf i.i.d.}\, N(\mu,1)$ yields $ar{X}_n\sim N(\mu,1/n)$ and so

$$\begin{split} \mathbb{P}_{\mu}(|\bar{X}_{n}-\mu|<\epsilon) &= \int_{\mu-\epsilon}^{\mu+\epsilon} \sqrt{\frac{n}{2\pi}} \exp\left(-\frac{n(\bar{x}_{n}-\mu)^{2}}{2}\right) \, \mathrm{d}\bar{x}_{n} \\ &= \int_{-\epsilon\sqrt{n}}^{\epsilon\sqrt{n}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) \, \mathrm{d}z \\ &= \mathbb{P}(|Z|<\epsilon\sqrt{n}) \to 1 \text{ as } n \to \infty \end{split}$$

• more generally, apply Chebychev's inequality to show that

$$\mathbb{P}_{\mu}(|\mathcal{T}_n - \theta| \ge \epsilon) \le rac{1}{\epsilon^2} \mathbb{E}_{\mu}(\mathcal{T}_n - \theta)^2 = rac{1}{\epsilon^2} \left[\operatorname{var}_{\theta}(\mathcal{T}_n) + \operatorname{bias}_{\theta}^2(\mathcal{T}_n)
ight]$$

converges to zero if and only if $\operatorname{var}_{\theta}(T_n) \to 0$ and $\operatorname{bias}_{\theta}(T_n) \to 0$ for all θ

• example:
$$\mathbb{E}_{\mu}(ar{X}_n)= heta$$
 and $ext{var}_{\mu}(ar{X}_n)=rac{1}{n}$

• theorem: let $X_i \sim i.i.d.f(x|\theta)$. Define the (rescaled) likelihood function

$$\hat{Q}_n(\theta) = n^{-1} \ln \ell(\boldsymbol{\theta}|\boldsymbol{x}) = n^{-1} \sum_{i=1}^n \ln f(x_i|\boldsymbol{\theta})$$

Under mild regularity conditions, the maximum likelihood estimator $\hat{\theta} = \arg \max \hat{Q}_n(\theta)$ is consistent, $\hat{\theta} \xrightarrow{p} \theta$

- this is an example of a extremum estimator: the proofs that follow do not require that $\hat{Q}_n(\theta)$ is a likelihood function, but rather that the estimator is the argument that maximizes some function that depends on parameters.
 - more applications of extremum estimators soon!

- why should this be the case? basic sketch of ideas:
 - as sample grows, $\hat{Q}_n(heta) \stackrel{p}{\longrightarrow} Q_0(heta)$ for every heta
 - if $Q_0(\theta)$ is maximized uniquely at $heta_0$, the argmax of $\hat{Q}_n(\theta)$ should be close to $heta_0$
 - we need to ascertain that technical conditions are in place which allows us to exchange the limit of the maximum of $\hat{Q}_n(\theta)$ by the maximum of the limit $Q_0(\theta)$
 - if $\hat{Q}_n(\theta) \in [Q_0(\theta) \varepsilon, Q_0(\theta) + \varepsilon]$, then $\hat{\theta} \in [\theta_l, \theta_u]$, and distance between θ_u and θ_l must be shrinking as $\varepsilon \to 0$

• definition: $\hat{Q}_n(\theta)$ converges uniformly in probability to $Q_0(\theta)$ if, and only if,

$$\sup_{ heta\in\Theta} |\hat{Q}_n(heta) - Q_0(heta)| \stackrel{p}{\longrightarrow} 0.$$

- we prove consistency in the (more general) framework of extremum estimators.
- theorem: if there is a function $Q_0(\theta)$ such that:
 - (i) $Q_0(\theta)$ is uniquely maximized at θ_0 (identification);
 - (ii) Θ is compact;
 - (iii) $Q_0(\theta)$ is continuous;
 - (iv) $\hat{Q}_n(\theta)$ converges uniformly in probability to $Q_0(\theta)$.

then $\hat{\theta} \stackrel{p}{\longrightarrow} \theta_0$.

• proof: take an $\epsilon > 0$. Since $\hat{\theta}$ maximizes $\hat{Q}_n(\theta)$,

$$\hat{Q}_n(\hat{ heta}) \geq \hat{Q}_n(heta_0) > \hat{Q}_n(heta_0) - rac{\epsilon}{3}$$

By uniform convergence of $\hat{Q}_n(\theta)$ to $Q_0(\theta)$, we also have that Q_0 and \hat{Q}_n are arbitrarily close at any θ . So we can find an N such that $n \ge N$,

$$egin{array}{rcl} |Q_0(heta) - \hat{Q}_n(heta)| \ < \ rac{\epsilon}{3} & \Rightarrow & Q_0(heta) - \hat{Q}_n(heta) \ < \ rac{\epsilon}{3} \ \Rightarrow & \hat{Q}_n(heta) \ > & Q_0(heta) - rac{\epsilon}{3} \end{array}$$

and

$$egin{array}{lll} |Q_0(heta)-\hat{Q}_n(heta)|\ <\ rac{\epsilon}{3} &\Rightarrow & -Q_0(heta)+\hat{Q}_n(heta)\ <\ rac{\epsilon}{3} \ &\Rightarrow & Q_0(heta)\ >\ \hat{Q}_n(heta)-rac{\epsilon}{3}. \end{array}$$

Since convergence is uniform, the above inequality holds for any $\theta \in \Theta$. In particular,

$$\begin{array}{lll} Q_0(\hat{\theta}) &> & \hat{Q}_n(\hat{\theta}) - \frac{\epsilon}{3} \\ \hat{Q}_n(\theta_0) &> & Q_0(\theta_0) - \frac{\epsilon}{3} \end{array}$$

• proof (cont'd): collecting inequalities,

$$\begin{array}{rcl} Q_0(\hat{\theta}) &>& \hat{Q}_n(\hat{\theta}) - \frac{\epsilon}{3} \\ \hat{Q}_n(\hat{\theta}) &>& \hat{Q}_n(\theta_0) - \frac{\epsilon}{3} \\ \hat{Q}_n(\theta_0) &>& Q_0(\theta_0) - \frac{\epsilon}{3} \end{array}$$

adding those inequalities, we have shown that for any $\epsilon > 0$, $Q_0(\hat{\theta}) > Q_0(\theta_0) - \epsilon$ with probability approaching 1.

Let C be any open subset of Θ containing θ_0 . Then $\Theta \cap C^c$ is compact. From the fact that $Q_0(\theta)$ is uniquely maximized at θ_0 and $Q_0(\theta)$ is continuous,

$$\sup_{ heta \in \Theta \cap \mathcal{C}^c} Q_0(heta) \; = \; Q_0(heta^*) \; < \; Q_0(heta_0)$$

for some $\theta^* \in \Theta \cap C^c$. Choosing $\epsilon = Q_0(\theta_0) - \sup_{\theta \in \Theta \cap C^c} Q_0(\theta)$, it follows that, with probability approaching 1,

$$Q_0(\hat{ heta}) > \sup_{ heta \in \Theta \cap \mathcal{C}^c} Q_0(heta)$$

and so $\hat{\theta} \in C$.

- corollary: under conditions (i)-(iv), MLE is consistent.
- in particular, MLE satisfies the identification condition $Q_0(\theta)$ is uniquely maximized at θ_0 .
- proof:

$$\begin{aligned} Q_0(\theta) - Q_0(\theta_0) &= \mathbb{E}\left(\ln\frac{f(x|\theta)}{f(x|\theta_0)}\right) \stackrel{\text{Jensen}}{\leq} & \ln\mathbb{E}\left(\frac{f(x|\theta)}{f(x|\theta_0)}\right) \\ &= & \ln\int\frac{f(x|\theta)}{f(x|\theta_0)}f(x|\theta_0)dx \\ &= & \ln\int f(x|\theta)dx = & \ln 1 = 0 \end{aligned}$$

which implies that ${\it Q}_0(heta) < {\it Q}_0(heta_0)$ for any $heta
eq heta_0$

asymptotic distribution

- · consistency says nothing about the asymptotic variance apart that it eventually converges to zero
- definition: the limiting variance τ^2 of the estimator T_n is given by

$$\lim_{n\to\infty}k_n\operatorname{Var} T_n = \tau^2 < \infty$$

where k_n is a sequence of constants

- example: if $X_1, \ldots, X_n \sim \text{i.i.d.} N(\mu, \sigma^2)$, then the limiting variance of \bar{X}_n is $\sigma^2 = \lim_{n \to \infty} \sqrt{n} \text{ var} \bar{X}_n$ given that $\bar{X}_n \sim N(\mu, \sigma^2/n)$
- definition: for an estimator T_n , the asymptotic variance is σ^2 in

$$k_n(T_n-\tau(\theta)) \stackrel{d}{\longrightarrow} N(0,\sigma^2)$$

if such convergence exists

efficiency

• definition: a sequence of estimators T_n is asymptotically efficient for a parameter $\tau(\theta)$ if $\sqrt{n}(T_n - \tau(\theta)) \stackrel{d}{\longrightarrow} N(0, \varsigma_{\theta}^2)$, with

$$\varsigma_{\theta}^{2} = \frac{\left[\tau'(\theta)\right]^{2}}{\mathbb{E}_{\theta}\left[\frac{\partial}{\partial \theta} \ln f(X|\theta)\right]^{2}}$$
 (CR lower bound)

• theorem: if $X_1, \ldots, X_n \sim \text{iid } f(x|\theta)$, with $f(x|\theta)$ satisfying some mild regularity conditions, the ML estimator $\hat{\theta}_n$ is asymptotically efficient for θ , implying that

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\longrightarrow} N(0, \mathcal{I}(\theta_0)^{-1})$$

where $\mathcal{I}(\theta_0)$ is Fischer information matrix. That is, the MLE achieves the Cramér-Rao lower bound

asymptotic efficiency of MLE

• proof: under certain regularity conditions,

(i) $\frac{1}{\sqrt{n}}\sum_{i=1}^{n} s(X_i, \theta_0) \xrightarrow{d} N(0, \mathcal{I}(\theta_0))$, where $\mathcal{I}(\theta)$ is the Fischer information matrix

(ii)
$$\frac{1}{n}\mathcal{H}(x_i,\theta_0) \xrightarrow{p} \mathbb{E}_{\theta} (\mathcal{H}(x,\theta_0)) = \mathcal{H}(\theta_0)$$

(iii) remember that $\mathcal{H}(\theta_0) = -\mathcal{I}(\theta_0)$

then, Taylor-expanding the score, for some $ilde{ heta} \in [heta_0, \hat{ heta}_n]$,

$$\begin{array}{lll} 0 & = & \displaystyle \frac{1}{n}\sum_{i=1}^n s(X_i,\hat{\theta}_n) \\ & = & \displaystyle \frac{1}{n}\sum_{i=1}^n s(X_i,\theta_0) + \left(\frac{1}{n}\sum_{i=1}^n \mathcal{H}(x_i,\tilde{\theta})\right) \left(\hat{\theta}_n - \theta_0\right) \end{array}$$

asymptotic efficiency of MLE

• proof (cont'd): therefore

$$\begin{pmatrix} \hat{\theta}_n - \theta_0 \end{pmatrix} = -\left(\frac{1}{n}\sum_{i=1}^n \mathcal{H}(x_i, \tilde{\theta})\right)^{-1} \frac{1}{n}\sum_{i=1}^n s\left(X_i, \theta_0\right) \\ \sqrt{n}(\hat{\theta}_n - \theta_0) = -\underbrace{\left(\frac{1}{n}\sum_{i=1}^n \mathcal{H}(x_i, \tilde{\theta})\right)^{-1}}_{\stackrel{p}{\longrightarrow} \mathcal{H}(\theta_0) + o_p(1)} \underbrace{\frac{1}{\sqrt{n}}\sum_{i=1}^n s\left(X_i, \theta_0\right)}_{\stackrel{d}{\longrightarrow} N\left(0, \mathcal{I}(\theta_0)^{-1}\mathcal{I}(\theta_0)\mathcal{I}(\theta_0)^{-1}\right)} \sim N\left(0, \mathcal{I}(\theta_0)^{-1}\right)$$

that is, the MLE achieves the Cramér-Rao lower bound asymptotically

- procedure:
 - (i) calculate $\mathcal{I}(\theta)$ analytically

(ii) approximate $\mathcal{I}(\theta_0)$ with $\mathcal{I}(\hat{\theta}_n)$, which should be a good approximation since $\hat{\theta}_n \xrightarrow{p} \theta_0$

• definition: if two estimators W_n and V_n are such that

$$\begin{array}{ccc} \sqrt{n} \left(W_n - \tau(\theta) \right) & \stackrel{d}{\longrightarrow} & \mathcal{N}(0, \sigma_W^2) \\ \\ \sqrt{n} \left(V_n - \tau(\theta) \right) & \stackrel{d}{\longrightarrow} & \mathcal{N}(0, \sigma_V^2) \end{array}$$

then the asymptotic relative efficiency (ARE) is $ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}$

Contents

1. point estimation: consistency and efficiency of MLE

2. hypothesis testing in large samples

2.1 trinity of tests

3. exercises

Contents

1. point estimation: consistency and efficiency of MLE

2. hypothesis testing in large samples

2.1 trinity of tests

3. exercises

asymptotic tests

• as the sample size grows, the asymptotic approximation works better and we are able to derive tests even in complicated problems for which no optimal test exists

• trinity of large-sample tests

- (1) likelihood ratio tests: distance between log-likelihoods
- (2) Wald tests: distance between estimators
- (3) score tests (or LM tests): distance to zero score

• differences

- LR tests estimate both restricted and unrestricted models
- Wald tests estimate only unrestricted model (if simple null)
- LM tests estimate only restricted model

trinity of tests

LR test, again

• it is one of the most useful methods for complicated problems because it gives not only an explicit definition of the test statistic, but also an explicit form for the rejection region

$$\text{reject } \mathbb{H}_0 \text{ if } x \in \left\{ x : \, \lambda(x) = \frac{\sup_{\theta \in \Theta_0} \ell(\theta | x)}{\sup_{\theta \in \Theta} \ell(\theta | x)} \leq c \right\}$$

- even if we cannot obtain the two suprema analytically, we can usually compute them numerically
- to define a level α test, we choose c such that

 $\sup_{\pmb{\theta}\in\Theta_{\mathbf{0}}}\mathbb{P}_{\pmb{\theta}}\big(\lambda(\pmb{X})\leq \pmb{c}\big)\leq\alpha$

asymptotic distribution of the LR test

• theorem: suppose that $X_1, \ldots, X_n \sim \text{iid}f(x|\theta)$, with the pdf satisfying the usual regularity conditions and consider testing the null $\mathbb{H}_0: \theta = \theta_0$ versus the alternative $\mathbb{H}_1: \theta \neq \theta_0$, then under \mathbb{H}_0 ,

$$-2\ln\lambda(\pmb{X}) \ \stackrel{d}{\longrightarrow} \ \chi_1^2$$

under the null

• proof: Taylor expanding $\ln \ell(\theta|\mathbf{x})$ around $\hat{\theta}$ yields

$$\begin{split} \ln \ell(\theta|\mathbf{x}) &\cong & \ln \ell(\hat{\theta}|\mathbf{x}) + \ln \ell'(\hat{\theta}|\mathbf{x})(\theta - \hat{\theta}) + \frac{1}{2} \ln \ell''(\hat{\theta}|\mathbf{x})(\theta - \hat{\theta})^2 \\ &\cong & \ln \ell(\hat{\theta}|\mathbf{x}) + \frac{1}{2} \ln \ell''(\hat{\theta}|\mathbf{x})(\theta - \hat{\theta})^2 \end{split}$$

it then follows that

$$-2\ln\lambda(\mathbf{x}) = 2\left[\ln\ell(\hat{\theta}|\mathbf{x}) - \ln\ell(\theta_0|\mathbf{x})\right] \cong -\ln\ell''(\theta_0|\mathbf{x})(\theta_0 - \hat{\theta})^2$$

completing the derivation as, under the null, $-\frac{1}{n} \ln \ell''(\hat{\theta}|\mathbf{x}) \xrightarrow{p} \mathcal{I}(\theta_0)$ and $\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{d} N(0, \mathcal{I}(\theta_0)^{-1})$

LR test for Poisson intensity

• example: suppose that $X_1, \ldots, X_n \sim \text{iid Poisson}(\lambda)$ and that the interest lies in testing $\mathbb{H}_0: \lambda = \lambda_0$ versus $\mathbb{H}_1: \lambda \neq \lambda_0$, then

$$-2\ln\lambda(\mathbf{x}) = -2\ln\left(\frac{e^{-n\lambda_{\mathbf{0}}}\lambda_{\mathbf{0}}^{n\bar{\mathbf{x}}_{n}}}{e^{-n\hat{\lambda}}\hat{\lambda}^{n\bar{\mathbf{x}}_{n}}}\right) = 2n\left[(\lambda_{\mathbf{0}} - \hat{\lambda}) - \hat{\lambda}\ln\left(\frac{\lambda_{\mathbf{0}}}{\hat{\lambda}}\right)\right] > \chi_{\mathbf{1},\alpha}^{2}$$

is the rejection region, where $\hat{\lambda}=\bar{x}_n$ is the ML estimator of λ

- accuracy of the asymptotic approximation
- simulation study with $\lambda_0 = 5$ and n = 25

(10,000 reps)

percentile	0.80	0.90	0.95	0.99
simulated distribution of the LR test	1.630	2.726	3.744	6.304
asymptotic approximation	1.642	2.706	3.841	6.635

extending the asymptotic theory...

• theorem: suppose that $X_1, \ldots, X_n \sim \text{iid } f(x|\theta)$, with the pdf satisfying the usual regularity conditions and consider testing the null $\mathbb{H}_0: \theta \in \Theta_0$ versus the alternative $\mathbb{H}_1: \theta \in \Theta_0^c$. Then

$$-2\ln\lambda(\mathbf{X}) \stackrel{d}{\longrightarrow} \chi_d^2$$

under the null, where the degrees of freedom *d* is the difference between the number of free parameters in Θ and Θ_0

reject
$$\mathbb{H}_0$$
 if and only if $-2 \ln \lambda(\boldsymbol{X}) \geq \chi^2_{d,1-\alpha}$

• note that the type I error probability will approach α if $\theta \in \Theta_0$ only for large samples, and hence we say that the above rejection region yields an asymptotic size α test

LR test for multinomial probabilities

- example: suppose that X_1, \ldots, X_n are iid discrete random variables with pmf $f(j|\mathbf{p}) = p_j$ for $j \in \{1, \ldots, 5\}$, then $\ell(\mathbf{p}|\mathbf{x}) = \prod_{i=1}^n p_1^{n_1} p_2^{n_2} p_3^{n_3} p_4^{n_4} p_5^{n_5}$, where n_j is the number of x_1, \ldots, x_n equal to j
- test $\mathbb{H}_0: \boldsymbol{p} \in \Theta_0$, where $\Theta_0 = \{ \boldsymbol{p}: \ p_1 = p_2 = p_3 \text{ and } p_4 = p_5 \}$
- full parameter space Θ has 4 free parameters, whereas only 1 free parameter remains after imposing the restrictions in Θ_0 : d = 3
- unrestricted MLE: $\hat{p}_j = \frac{n_j}{n}$

Wald test

• large-sample test based on any asymptotically normal estimator

$$Z_n(heta) = rac{T_n - heta}{\sigma(T_n)} \stackrel{d}{\longrightarrow} N(0, 1)$$
 for each fixed value of $heta \in \Theta$

• even if σ has to be estimated,

$$Z_n(\theta) = \frac{T_n - \theta}{\sigma(T_n)} = \frac{T_n - \theta}{\hat{\sigma}(T_n)} \frac{\hat{\sigma}(T_n)}{\sigma(T_n)} \stackrel{d}{\longrightarrow} N(0, 1)$$

as long as $\hat{\sigma}(T_n) \xrightarrow{p} \sigma(T_n)$.

- example: consider testing $\mathbb{H}_0: \theta = \theta_0$ versus $\mathbb{H}_1: \theta \neq \theta_0$ using the fact that $Z_n(\theta_0) \stackrel{d}{\longrightarrow} N(0, 1)$ under the null \mathbb{H}_0
 - asymptotic size α requires to reject if $|Z_n(heta_0)| > z_{1-\alpha/2}$
 - $\text{ consistent because } \mathbb{P}_\theta\left(|Z_n(\theta_0)|>z_{1-\alpha/2}\right) \to 1 \text{ for any } \theta \in \Theta_0^c$

Wald test for binomial probability

- example: suppose that $X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$ and that the interest lies in testing $\mathbb{H}_0: p \leq p_0$ versus $\mathbb{H}_1: p > p_0$, with $0 < p_0 < 1$
- $ar{X}_n \sim \mathsf{MLE}$, with variance $\sigma^2(ar{X}_n) = p(1-p)/n$

$$W_n = Z_n(p_0) \frac{\sigma(\bar{X}_n)}{\hat{\sigma}(\bar{X}_n)} = \frac{\bar{X}_n - p_0}{\sigma(\bar{X}_n)} \frac{\sigma(\bar{X}_n)}{\sqrt{\bar{X}_n(1 - \bar{X}_n)/n}} \xrightarrow{d} N(0, 1)$$

- reject $\mathbb{H}_0: p \leq p_0$ if $\mathsf{T}_n > z_{1-\alpha}$
- in the two-sided case with $\mathbb{H}_0: p = p_0$, we can alternatively estimate $\sigma^2(\bar{X}_n) = p(1-p)/n$ by $p_0(1-p_0)/n$, yielding a more powerful test for some values of p

score test

• score statistic
$$S_ heta=s(m{X}, heta)=rac{\partial\ln\ell(heta|m{X})}{\partial heta}$$
 has mean zero and

$$\operatorname{var}_{\theta}(S_{\theta}) = \mathbb{E}_{\theta}\left[\frac{\partial \ln \ell(\theta|\boldsymbol{X})}{\partial \theta}\right]^{2} = -\mathbb{E}_{\theta}\left[\frac{\partial^{2} \ln \ell(\theta|\boldsymbol{X})}{\partial \theta^{2}}\right] = \mathcal{I}(\theta)$$

for all $\boldsymbol{\theta},$ and hence

$$\mathsf{LM} = rac{s(oldsymbol{X}, heta_0)}{\sqrt{\mathcal{I}(heta_0)}} \stackrel{d}{\longrightarrow} \mathsf{N}(0, 1)$$

- asymptotic level α score test rejects $\mathbb{H}_0: \theta \leq \theta_0$ if $\mathsf{LM} > z_{1-\alpha}$
- if composite null, maximize restricted likelihood to obtain $\hat{\theta}_0$ (possibly by means of Lagrange multipliers)

score test for Bernoulli probability

• suppose that $X_1, \ldots, X_n \sim \text{iid Bernoulli}(p)$ and that the interest lies in testing $\mathbb{H}_0: p = p_0$ versus $\mathbb{H}_1: p \neq p_0$, then

$$\mathsf{LM} = rac{s_{p_0}}{\sqrt{\mathcal{I}(p_0)}} = rac{ar{X}_n - p_0}{\sqrt{p_0(1-p_0)/n}} \stackrel{d}{\longrightarrow} N(0,1)$$

- reject
$$\mathbb{H}_0: p = p_0$$
 if $|\mathsf{LM}| > z_{1-\alpha/2}$

- same test statistic than the alternative Wald test

Contents

1. point estimation: consistency and efficiency of MLE

2. hypothesis testing in large samples

2.1 trinity of tests

3. exercises

Reference:

- Casella and Berger, Ch. 10
- Newey and McFadden, "Large Sample Estimation and Hypothesis Testing", Handbook of Econometrics, Ch. 36

Exercises:

• 10.1-10.10, 10.18-10.19, 10.22, 10.32-10.38, 10.40, 10.47